

Planning EMS patient transports

Melanie Reuter

Institute of Operations Research - Discrete Optimization and Logistics

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

EMS in Germany

Emergency

Initial treatment for and transport of emergency • patients

Emergency doctors

Time-critical transport of patients between hospitals

 Transport of patients that need medical assistance Patient Transport of non-emergency patients between Transport hospitals Patients might be infectious •

Rescue

Planning patient transports - motivation

- Patient transport in Germany is in general a dial-a-ride problem
 - Patients with pickup and delivery
 - 20 80 % of transports are known in the morning (or in the evening the day before)
 - Currently, transports are usually not planned in advance

	2000	2010
% German population ≥ 65 years	16.44	20.63
# hospitals	2242	2064
# patient transports in Germany	3,935,884	5,317,425

Planning patient transports in practice

Idea

- Build a tool that helps the dispatcher to schedule the transportation tasks
 - Decision support tool

Aim

- Relief of the dispatchers
- Identification of bottlenecks in time
- Balanced utilization of the vehicles / balanced workload for the emergency medical assistants

Difficulties

- Including short-term requests might be tricky
- Cooperation
 - Project proposal

Transportation tasks

\rightarrow The cancellation of tasks is also possible, of course

Data requirements

Available vehicles – three different problems

Focused on this for the beginning

The more interesting problem

Travelled Waiting time Empty trips Vehicles Workload Distance No law Extend the Mainly for the If not fixed Between lifespan of case when providers! Aim: 30 Good for planning for an minutes max Within an voluntary staff ambulance more than organization!? Contrary to Max utilization one region costs Contrary to waiting time

Min

Objective functions

Balance

Example

Decisions

- Clustering the tasks
- Allocation to vehicles
- Building the routes

Assumptions

- Fixed number of vehicles for given periods (working hours)
- 1 patient per vehicle
- 1 station (depot)
- Patient data incl. time window known
- Transports cannot be interrupted
- Vehicle goes back to station if there is "enough time" between tasks
- After transportation of an infectious patient, vehicle needs to be cleaned
- In case of a dynamic setting: not all tasks are known at the beginning, but at certain points in time / within fixed time intervals

Models and methods

- Dial-a-ride formulation
 - Based on existing literature
 - Patient transports in hospitals and
 - EMS patient transports in Austria
 - Work-in-progress
 - Some specifics still need to be included
 - Objective function
 - Min empty travel time + waiting times for patients and staff
- Best insertion algorithm
 - Same objective function
 - Additionally balancing of tour length
 - Needed parameters for the objective function were determined automatically to improve the solutions
 - Worked well for all test instances

Test instances for Karlsruhe

- Random instances with the following input
 - 33 important points (e.g., hospitals) in the Karlsruhe region
 - Pick-up times between 6:30h and 20:00h
 - Probability distributions for pick-up locations and times as well as transports of infected patients based on information from practice

Parameter

- Max allowed deviation from time window
- Handling time for pick-up and delivery depending on transport type

Instances with 32, 52, 72 and 100 tasks

Institute of Operations Research, Discrete Optimization and Logistics

First results

- Solution times for the formulation
 - 32 tasks in 30 min
 - 52 tasks in 5h 20 min
 - 72 tasks in 7h 45 min
 - Max 100 tasks in an average German region; solve it optimally over night is possible

Insertion heuristic

- Including short-term demand was possible
- Knowing "earlier" about same day demand in general helpful, but not significantly
- Balancing tours enlarges the empty travel time only slightly

Open questions

- Other algorithms (evolutionary algorithms, merge-savings etc.) better?
- Build different mathematical models and compare their results
 Is it beneficial to solve the problem optimally?
- Does it help to include stochasticity and for example include dummy tasks for the unknown transports?
- How to handle multifunctional vehicles?
 - Can we determine simple rules for the assignment of tasks?

Thank you for your attention!

melanie.reuter@kit.edu

Institute of Operations Research - Discrete Optimization and Logistics

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu